

Welcome to OpenROAD’s documentation!

The OpenROAD (“Foundations and Realization of Open, Accessible Design”) project
was launched in June 2018 within the DARPA IDEA program. OpenROAD aims to bring
down the barriers of cost, expertise and unpredictability that currently block
designers’ access to hardware implementation in advanced technologies. The
project team (Qualcomm, Arm and multiple universities and partners, led by UC
San Diego) is developing a fully autonomous, open-source tool chain for digital
layout generation across die, package and board, with initial focus on the
RTL-to-GDSII phase of system-on-chip design. Thus, OpenROAD holistically attacks
the multiple facets of today’s design cost crisis: engineering resources, design
tool licenses, project schedule, and risk.

The IDEA program targets no-human-in-loop (NHIL) design, with 24-hour turnaround
time and zero loss of power-performance-area (PPA) design quality.

The NHIL target requires tools to adapt and auto-tune successfully to flow completion
without or with significantly minimal human intervention. Machine intelligence augments
human expertise through efficient modeling and prediction of flow outcomes during layout generation.

24 hours runtime target implies that problems must be strategically decomposed into optimal partitions
during the design process through intellgient distribution and management of computational
resources. This ensures that the design constraints are met for schedule, performance
and cost. Any quality loss due to decomposition that uses a parallel and distributed search
over cloud resources, is subsequently recovered through improved flow predictability and enhanced optimization.

For a technical description of the OpenROAD flow, please refer to our DAC paper:
Toward an Open-Source Digital Flow: First Learnings from the OpenROAD Project [https://vlsicad.ucsd.edu/Publications/Conferences/371/c371.pdf].
Also, available from ACM Digital Library [https://dl.acm.org/doi/10.1145/3316781.3326334].

How to navigate this documentation

	If you are a user, start with the Getting Started guide, and then move on to the User Guide.

	If you are willing to contribute, see the Getting Involved section.

	If you are a developer with EDA background, learn more about how you can use OpenROAD as the infrastructure for your tools in the Developer Guide section.

See FAQs and Capabilities/Limitations for relevant background on the project.

How to get in touch

We maintain the following channels for communication:

	Project homepage and news: https://theopenroadproject.org

	Twitter: https://twitter.com/OpenROAD_EDA

	Issues and bugs: https://github.com/The-OpenROAD-Project/OpenROAD/issues

	Gitter Community: https://gitter.im/The-OpenROAD-Project/community

	Inquiries: openroad@eng.ucsd.edu

Site Map

Contents:

	Getting Started
	Prerequisites

	Get the tools
	Option 1: build from sources using Docker

	Option 2: Build from sources locally

	Designs
	Adding a New Design

	Platforms
	Adding a New Platform

	Implement the Design

	Miscellaneous
	tiny-tests - easy to add, single concern, single Verilog file

	nangate45 smoke-test harness for top level Verilog designs

	User Guide
	Code Organization

	Setup

	Using the flow
	Logic Synthesis

	Initialize Floorplan

	Gate Resizer

	Timing Analysis

	MacroPlace

	Tapcell

	Global Placement

	Detailed Placement

	Clock Tree Synthesis

	Global Routing

	Detailed Routing

	Capabilities/Limitations
	Global Considerations

	Supported Platforms

	Design Partitioning and Logic Synthesis

	STA

	Floorplan

	Placement

	Clock Tree Synthesis

	Routing

	Layout Finishing and Final Verifications

	Developer Guide
	Tool Philosophy

	Tool File Organization

	Initialization (c++ tools only)

	Commands

	Errors

	Test

	Builds

	Tool Work Flow

	Example of Adding a Tool to OpenRoad

	Documentation

	Tool Flow

	Tool Checklist

	Coding Practices
	C++
	Practice #1

	Practice #2

	Practice #3

	Practice #4

	Practice #5

	Practice #6

	Practice #7

	Practice #8

	Practice #9

	Practice #10

	Practice #11

	Practice #12

	Practice #13

	Practice #14

	Practice #15

	Practice #16

	Practice #17

	Practice #18

	Practice #19

	Practice #20

	Practice #21

	Practice #22

	Practice #23

	Practice #24

	Practice #25

	Practice #26

	Practice #27

	Practice #28

	Practice #29

	Practice #30

	Practice #34

	Practice #35

	Git
	Practice #31

	Practice #32

	Practice #33

	CMAKE
	Practice #35

	Practice #36

	Practice #37

	Database Math 101

	Getting Involved
	Licensing Contributions

	Contributing Open Source PDK information and Designs

	Contributing Scripts and Code

	Questions

	Using the logging infrastructure
	Message Types
	Report

	Debug

	Information

	Warning

	Error

	Critical

	Coding
	Debug Messages

	Metrics

	Converting to Logger

	FAQs
	Where can I download OpenROAD tools?

	How can I contribute?

Getting Started

OpenROAD is divided into a number of tools that are orchestrated
together to achieve RTL-to-GDS. As of the current implementation, the
flow is divided into two stages:

	Logic Synthesis: is performed by yosys [https://github.com/The-OpenROAD-Project/yosys].

	Floorplanning through Detailed Routing: are performed by OpenROAD App [https://github.com/The-OpenROAD-Project/OpenROAD].

In order to integrate the flow steps, OpenROAD-flow-scripts [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts] repository includes
the necessary scripts to build and test the flow.

Prerequisites

Before proceeding to the next step:
1. Install Docker [https://docs.docker.com/engine/install] on your machine, OR
2. Check that build dependencies for all tools are installed on your machine.

During initial Setup or if you have installed on a new machine, run this script:
run ./etc/DependencyInstaller.sh

Get the tools

There are currently two options to get OpenROAD tools.

Option 1: build from sources using Docker

Clone and Build

$ git clone --recursive https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
$ cd OpenROAD-flow-scripts
$./build_openroad.sh

Verify Installation

The binaries should be available on your $PATH after setting up the
environment.

$ docker run -it -u $(id -u ${USER}):$(id -g ${USER}) -v $(pwd)/flow/platforms:/OpenROAD-flow-scripts/flow/platforms:ro openroad/flow-scripts
[inside docker] $ source ./setup_env.sh
[inside docker] $ yosys -help
[inside docker] $ openroad -help
[inside docker] $ cd flow
[inside docker] $ make
[inside docker] $ exit

Option 2: Build from sources locally

Clone and Build

$ git clone --recursive https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
$ cd OpenROAD-flow-scripts
$./build_openroad.sh --local

Verify Installation

The binaries should be available on your $PATH after setting up the
environment.

$ source ./setup_env.sh
$ yosys -help
$ openroad -help
$ exit

Designs

Sample design configurations are available in the designs directory.
You can select a design using either of the following methods:

1. The flow Makefile [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/Makefile] contains a list of sample design configurations at
the top of the file. Uncomment the respective line to select the design
2. Specify the design using the shell environment, e.g.
make DESIGN_CONFIG=./designs/nangate45/swerv/config.mk or
export DESIGN_CONFIG=./designs/nangate45/swerv/config.mk ; make

By default, the simple design gcd is selected. We recommend implementing
this design first to validate your flow and tool setup.

Adding a New Design

To add a new design, we recommend looking at the included designs for
examples of how to set one up.

Platforms

OpenROAD-flow-scripts supports Verilog to GDS for the following open platforms:
Nangate45 / FreePDK45

These platforms have a permissive license which allows us to
redistribute the PDK and OpenROAD platform-specific files. The platform
files and license(s) are located in platforms/{platform}.

OpenROAD-flow-scripts also supports the following commercial platforms: TSMC65LP /
GF14 (in progress)

The PDKs and platform-specific files for these kits cannot be provided
due to NDA restrictions. However, if you are able to access these
platforms, you can create the necessary platform-specific files
yourself.

Once the platform is setup. Create a new design configuration with
information about the design. See sample configurations in the
design directory.

Adding a New Platform

At this time, we recommend looking at the Nangate45 [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45] as an example of
how to set up a new platform for OpenROAD-flow-scripts.

Implement the Design

Run make to perform Verilog to GDS. The final output will be located
at flow/results/{platform}/{design_name}/6_final.gds

Miscellaneous

tiny-tests - easy to add, single concern, single Verilog file

The tiny-tests are have been designed with two design goals in mind:

	It should be trivial to add a new test: simply add a tiny standalone
Verilog file to OpenROAD-flow-scripts/flow/designs/src/tiny-tests

	Each test should be as small and as standalone as possible and be a
single concern test.

To run a test:

make DESIGN_NAME=SmallPinCount DESIGN_CONFIG=`pwd`/designs/tiny-tests.mk

nangate45 smoke-test harness for top level Verilog designs

	Drop your Verilog files into designs/src/harness

	Start the workflow:

make DESIGN_NAME=TopLevelName DESIGN_CONFIG=`pwd`/designs/harness.mk

Note

TIP! Start with a small tiny submodule in your design with few pins

User Guide

OpenROAD is divided into a number of tools that are orchestrated
together to achieve RTL-to-GDS. As of the current implementation, the
flow is divided into three stages:

	Logic Synthesis: is performed by yosys [https://github.com/The-OpenROAD-Project/yosys].

	Floorplanning through Detailed Routing: are performed by OpenROAD App [https://github.com/The-OpenROAD-Project/OpenROAD].

	KLayout: GDS merge, DRC and LVS (public PDKs)

To Run OpenROAD flow, we provide scripts to automate the RTL-to-GDS
stages. Alternatively, you can run the individual steps manually.

GitHub: OpenROAD-flow-scripts [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts]

Code Organization

This repository serves as an example RTL-to-GDS flow using the OpenROAD tools.

The two main components are:

	tools: This directory contains the source code for the entire
openroad app (via submodules) as well as other tools required for
the flow. The script build_openroad.sh in this repository will
automatically build the OpenROAD toolchain.

	flow: This directory contains reference recipes and scripts to
run | designs through the flow. It also contains platforms and test
designs.

Setup

The flow has the following dependencies:

	OpenROAD

	KLayout

	Yosys

The dependencies can either be obtained from a pre-compiled build export
or built manually. See the KLayout website [https://www.klayout.de/]
for installation instructions.

Using the flow

See the flow README [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/README.md] for details about the flow and how to run designs through the flow.

Logic Synthesis

GitHub: https://github.com/The-OpenROAD-Project/yosys

Setup

Requirements

	C++ compiler with C++11 support (up-to-date CLANG or GCC is
recommended)

	GNU Flex, GNU Bison, and GNU Make.

	TCL, readline and libffi.

On Ubuntu:

$ sudo apt-get install build-essential clang bison flex \
 libreadline-dev gawk tcl-dev libffi-dev git \
 graphviz xdot pkg-config python3 libboost-system-dev \
 libboost-python-dev libboost-filesystem-dev zlib1g-dev

On Mac OS X Homebrew can be used to install dependencies (from within
cloned yosys repository):

$ brew tap Homebrew/bundle && brew bundle

To configure the build system to use a specific compiler, use one of

$ make config-clang
$ make config-gcc

Build

To build Yosys simply type ‘make’ in this directory.

$ make
$ sudo make install

Synthesis Script

yosys -import

if {[info exist ::env(DC_NETLIST)]} {
exec cp $::env(DC_NETLIST) $::env(RESULTS_DIR)/1_1_yosys.v
exit
}

Don't change these unless you know what you are doing
set stat_ext "_stat.rep"
set gl_ext "_gl.v"
set abc_script "+read_constr,$::env(SDC_FILE);strash;ifraig;retime,-D,{D},-M,6;strash;dch,-f;map,-p-M,1,{D},-f;topo;dnsize;buffer,-p;upsize;"

Setup verilog include directories
set vIdirsArgs ""
if {[info exist ::env(VERILOG_INCLUDE_DIRS)]} {
 foreach dir $::env(VERILOG_INCLUDE_DIRS) {
 lappend vIdirsArgs "-I$dir"
 }
 set vIdirsArgs [join $vIdirsArgs]
}

read verilog files
foreach file $::env(VERILOG_FILES) {
 read_verilog -sv {*}$vIdirsArgs $file
}

Read blackbox stubs of standard cells. This allows for standard cell (or
structural netlist) support in the input verilog
read_verilog $::env(BLACKBOX_V_FILE)

Apply toplevel parameters (if exist)
if {[info exist ::env(VERILOG_TOP_PARAMS)]} {
 dict for {key value} $::env(VERILOG_TOP_PARAMS) {
 chparam -set $key $value $::env(DESIGN_NAME)
 }
}

Read platform specific mapfile for OPENROAD_CLKGATE cells
if {[info exist ::env(CLKGATE_MAP_FILE)]} {
 read_verilog $::env(CLKGATE_MAP_FILE)
}

Use hierarchy to automatically generate blackboxes for known memory macro.
Pins are enumerated for proper mapping
if {[info exist ::env(BLACKBOX_MAP_TCL)]} {
 source $::env(BLACKBOX_MAP_TCL)
}

generic synthesis
synth -top $::env(DESIGN_NAME) -flatten

Optimize the design
opt -purge

technology mapping of latches
if {[info exist ::env(LATCH_MAP_FILE)]} {
 techmap -map $::env(LATCH_MAP_FILE)
}

technology mapping of flip-flops
dfflibmap -liberty $::env(OBJECTS_DIR)/merged.lib
opt

Technology mapping for cells
abc -D [expr $::env(CLOCK_PERIOD) * 1000] \
 -constr "$::env(SDC_FILE)" \
 -liberty $::env(OBJECTS_DIR)/merged.lib \
 -script $abc_script \
 -showtmp

technology mapping of constant hi- and/or lo-drivers
hilomap -singleton \
 -hicell {*}$::env(TIEHI_CELL_AND_PORT) \
 -locell {*}$::env(TIELO_CELL_AND_PORT)

replace undef values with defined constants
setundef -zero

Splitting nets resolves unwanted compound assign statements in netlist (assign {..} = {..})
splitnets

insert buffer cells for pass through wires
insbuf -buf {*}$::env(MIN_BUF_CELL_AND_PORTS)

remove unused cells and wires
opt_clean -purge

reports
tee -o $::env(REPORTS_DIR)/synth_check.txt check
tee -o $::env(REPORTS_DIR)/synth_stat.txt stat -liberty $::env(OBJECTS_DIR)/merged.lib

write synthesized design
write_verilog -noattr -noexpr -nohex -nodec $::env(RESULTS_DIR)/1_1_yosys.v

Initialize Floorplan

initialize_floorplan
[-site site_name] LEF site name for ROWS
[-tracks tracks_file] routing track specification
-die_area "lx ly ux uy" die area in microns
[-core_area "lx ly ux uy"] core area in microns
or
-utilization util utilization (0-100 percent)
[-aspect_ratio ratio] height / width, default 1.0
[-core_space space] space around core, default 0.0 (microns)

The die area and core size used to write ROWs can be specified
explicitly with the -die_area and -core_area arguments. Alternatively,
the die and core area can be computed from the design size and
utilization as show below:

If no -tracks file is used the routing layers from the LEF are used.

core_area = design_area / (utilization / 100)
core_width = sqrt(core_area / aspect_ratio)
core_height = core_width * aspect_ratio
core = (core_space, core_space) (core_space + core_width, core_space + core_height)
die = (0, 0) (core_width + core_space * 2, core_height + core_space * 2)

Place pins around core boundary.

auto_place_pins pin_layer

Gate Resizer

Gate resizer commands are described below. The resizer commands stop
when the design area is -max_utilization util percent of the core
area. util is between 0 and 100.

set_wire_rc [-layer layer_name]
 [-resistance res]
 [-capacitance cap]
 [-corner corner_name]

The set_wire_rc command sets the resistance and capacitance used to
estimate delay of routing wires. Use -layer or -resistance and
-capacitance. If -layer is used, the LEF technology resistance
and area/edge capacitance values for the layer are used. The units for
-resistance and -capacitance are from the first liberty file
read, resistance_unit/distance_unit and liberty
capacitance_unit/distance_unit. RC parasitics are added based on placed
component pin locations. If there are no component locations no
parasitics are added. The resistance and capacitance are per distance
unit of a routing wire. Use the set_units command to check units or
set_cmd_units to change units. They should represent “average”
routing layer resistance and capacitance. If the set_wire_rc command is
not called before resizing, the default_wireload model specified in the
first liberty file or with the SDC set_wire_load command is used to make
parasitics.

buffer_ports [-inputs]
 [-outputs]
 -buffer_cell buffer_cell

The buffer_ports -inputs command adds a buffer between the input and
its loads. The buffer_ports -outputs adds a buffer between the port
driver and the output port. If The default behavior is -inputs and
-outputs if neither is specified.

resize [-libraries resize_libraries]
 [-dont_use cells]
 [-max_utilization util]

The resize command resizes gates to normalize slews.

The -libraries option specifies which libraries to use when
resizing. resize_libraries defaults to all of the liberty libraries
that have been read. Some designs have multiple libraries with different
transistor thresholds (Vt) and are used to trade off power and speed.
Chosing a low Vt library uses more power but results in a faster design
after the resizing step. Use the -dont_use option to specify a list
of patterns of cells to not use. For example, */DLY* says do not use
cells with names that begin with DLY in all libraries.

repair_max_cap -buffer_cell buffer_cell
 [-max_utilization util]
repair_max_slew -buffer_cell buffer_cell
 [-max_utilization util]

The repair_max_cap and repair_max_slew commands repair nets with
maximum capacitance or slew violations by inserting buffers in the net.

repair_max_fanout -max_fanout fanout
 -buffer_cell buffer_cell
 [-max_utilization util]

The repair_max_fanout command repairs nets with a fanout greater
than fanout by inserting buffers between the driver and the loads.
Buffers are located at the center of each group of loads.

repair_tie_fanout [-max_fanout fanout]
 [-verbose]
 lib_port

The repair_tie_fanout command repairs tie high/low nets with fanout
greater than fanout by cloning the tie high/low driver. lib_port
is the tie high/low port, which can be a library/cell/port name or
object returned by get_lib_pins. Clones are located at the center of
each group of loads.

repair_hold_violations -buffer_cell buffer_cell
 [-max_utilization util]

The repair_hold_violations command inserts buffers to repair hold
check violations.

report_design_area

The report_design_area command reports the area of the design’s
components and the utilization.

report_floating_nets [-verbose]

The report_floating_nets command reports nets with only one pin
connection. Use the -verbose flag to see the net names.

A typical resizer command file is shown below.

read_lef nlc18.lef
read_liberty nlc18.lib
read_def mea.def
read_sdc mea.sdc
set_wire_rc -layer metal2
set buffer_cell [get_lib_cell nlc18_worst/snl_bufx4]
set max_util 90
buffer_ports -buffer_cell $buffer_cell
resize -resize
repair_max_cap -buffer_cell $buffer_cell -max_utilization $max_util
repair_max_slew -buffer_cell $buffer_cell -max_utilization $max_util
repair tie hi/low before max fanout so they don't get buffered
repair_tie_fanout -max_fanout 100 Nangate/LOGIC1_X1/Z
repair_max_fanout -max_fanout 100 -buffer_cell $buffer_cell -max_utilization $max_util
repair_hold_violations -buffer_cell $buffer_cell -max_utilization $max_util

Note that OpenSTA commands can be used to report timing metrics before
or after resizing the design.

set_wire_rc -layer metal2
report_checks
report_tns
report_wns
report_checks

resize

report_checks
report_tns
report_wns

Timing Analysis

Timing analysis commands are documented in src/OpenSTA/doc/OpenSTA.pdf.

After the database has been read from LEF/DEF, Verilog or an OpenDB
database, use the read_liberty command to read Liberty library files
used by the design.

The example script below timing analyzes a database.

read_liberty liberty1.lib
read_db reg1.db
create_clock -name clk -period 10 {clk1 clk2 clk3}
set_input_delay -clock clk 0 {in1 in2}
set_output_delay -clock clk 0 out
report_checks

MacroPlace

TritonMacroPlace
https://github.com/The-OpenROAD-Project/TritonMacroPlace

macro_placement -global_config <global_config_file>

	global_config : Set global config file loction. [string]

Global Config Example

set ::HALO_WIDTH_V 1
set ::HALO_WIDTH_H 1
set ::CHANNEL_WIDTH_V 0
set ::CHANNEL_WIDTH_H 0

	HALO_WIDTH_V : Set macro’s vertical halo. [float; unit: micron]

	HALO_WIDTH_H : Set macro’s horizontal halo. [float; unit: micron]

	CHANNEL_WIDTH_V : Set macro’s vertical channel width. [float;
unit: micron]

	CHANNEL_WIDTH_H : Set macro’s horizontal channel width. [float;
unit: micron]

Tapcell

Tapcell and endcap insertion.

tapcell -tapcell_master <tapcell_master>
 -endcap_master <endcap_master>
 -endcap_cpp <endcap_cpp>
 -distance <dist>
 -halo_width_x <halo_x>
 -halo_width_y <halo_y>
 -tap_nwin2_master <tap_nwin2_master>
 -tap_nwin3_master <tap_nwin3_master>
 -tap_nwout2_master <tap_nwout2_master>
 -tap_nwout3_master <tap_nwout3_master>
 -tap_nwintie_master <tap_nwintie_master>
 -tap_nwouttie_master <tap_nwouttie_master>
 -cnrcap_nwin_master <cnrcap_nwin_master>
 -cnrcap_nwout_master <cnrcap_nwout_master>
 -incnrcap_nwin_master <incnrcap_nwin_master>
 -incnrcap_nwout_master <incnrcap_nwout_master>
 -tbtie_cpp <tbtie_cpp>
 -no_cell_at_top_bottom
 -add_boundary_cell

You can find script examples for supported technologies
tap/etc/scripts

Global Placement

RePlAce global placement.
https://github.com/The-OpenROAD-Project/RePlAce

global_placement -skip_initial_place
 -incremental
 -bin_grid_count <grid_count>
 -density <density>
 -init_density_penalty <init_density_penalty>
 -init_wirelength_coef <init_wirelength_coef>
 -min_phi_coef <min_phi_coef>
 -max_phi_coef <max_phi_coef>
 -overflow <overflow>
 -initial_place_max_iter <max_iter>
 -initial_place_max_fanout <max_fanout>
 -verbose_level <level>

Flow Control

	skip_initial_place : Skip the initial placement (BiCGSTAB
solving) before Nesterov placement. IP improves HPWL by ~5% on large
designs. Equal to ‘-initial_place_max_iter 0’

	incremental : Enable the incremental global placement. Users
would need to tune other parameters (e.g. init_density_penalty) with
pre-placed solutions.

Tuning Parameters

	bin_grid_count : Set bin grid’s counts. Default: Defined by
internal algorithm. [64,128,256,512,…, int]

	density : Set target density. Default: 0.70 [0-1, float]

	init_density_penalty : Set initial density penalty. Default: 8e-5
[1e-6 - 1e6, float]

	__init_wire_length__coef__ : Set initial wirelength coefficient.
Default: 0.25 [unlimited, float]

	min_phi_coef : Set pcof_min(µ_k Lower Bound). Default: 0.95
[0.95-1.05, float]

	max_phi_coef : Set pcof_max(µ_k Upper Bound). Default: 1.05
[1.00-1.20, float]

	overflow : Set target overflow for termination condition.
Default: 0.1 [0-1, float]

	initial_place_max_iter : Set maximum iterations in initial place.
Default: 20 [0-, int]

	initial_place_max_fanout : Set net escape condition in initial
place when ‘fanout >= initial_place_max_fanout’. Default: 200 [1-,
int]

Other Options

	verbose_level : Set verbose level for RePlAce. Default: 1 [0-10,
int]

Detailed Placement

Legalize a design that has been globally placed.

legalize_placement [-constraints constraints_file]

Clock Tree Synthesis

Create clock tree subnets.

clock_tree_synthesis -root_buf <root_buf> \
 -buf_list <tree_bufs> \
 [-clk_nets <list_of_clk_nets>]

	root_buffer is the master cell of the buffer that serves as root

	buf_list is the list of master cells of the buffers that can be used
for building the clock tree.

	clk_nets is a string containing the names of the clock roots. If
this parameter is ommitted, TritonCTS looks for the clock roots
automatically.

Global Routing

FastRoute global route. Generate routing guides given a placed design.

fastroute -output_file out_file
 -capacity_adjustment <cap_adjust>
 -min_routing_layer <min_layer>
 -max_routing_layer <max_layer>
 -pitches_in_tile <pitches>
 -layers_adjustments <list_of_layers_to_adjust>
 -regions_adjustments <list_of_regions_to_adjust>
 -nets_alphas_priorities <list_of_alphas_per_net>
 -verbose <verbose>
 -unidirectional_routing
 -clock_net_routing

Options description:

	capacity_adjustment: Set global capacity adjustment (e.g.:
-capacity_adjustment 0.3)

	min_routing_layer: Set minimum routing layer (e.g.:
-min_routing_layer 2)

	max_routing_layer: Set maximum routing layer (e.g.:
max_routing_layer 9)

	pitches_in_tile: Set the number of pitches inside a GCell

	layers_adjustments: Set capacity adjustment to specific layers
(e.g.: -layers_adjustments {{ } …})

	regions_adjustments: Set capacity adjustment to specific regions
(e.g.: -regions_adjustments { } …})

	nets_alphas_priorities: Set alphas for specific nets when using
clock net routing (e.g.: -nets_alphas_priorities {{ } …})

	verbose: Set verbose of report. 0 for less verbose, 1 for medium
verbose, 2 for full verbose (e.g.: -verbose 1)

	unidirectional_routing: Activate unidirectional routing (flag)

	clock_net_routing: Activate clock net routing (flag)

	NOTE 1: if you use the flag unidirectional_routing, the minimum
routing layer will be assigned as “2” automatically

	NOTE 2: the first routing layer of the design have index equal to
1

	NOTE 3: if you use the flag clock_net_routing, only guides for
clock nets will be generated

Detailed Routing

Run

detailed_route -param <param_file>

Options description:

	param_file: This file contains the parameters used to
control the detailed router)

Capabilities/Limitations

Global Considerations

	OpenROAD v1.0 production will be focused on the tapeout mentioned in
the above introduction. Features will be implemented in priority
order based on our sponsor requirement to make the chosen design
manufacturable. In Phase 2 of the IDEA program, the OpenROAD tool
feature set will be rounded out and more of the project’s flow and
tool research objectives will be addressed.

	Each new design enablement (foundry process/PDK, library, IPs) will
require setup via configuration files, one-time characterizations,
etc. as documented with the tool. Examples include (i) the setup of
PDN generation, (ii) the creation of “wrapped LEF abstracts” for
cells and/or macros to comply with Generic Node Enablement (see
Routing, below), and (iii) the creation of characterized lookup
tables to guide CTS buffering.

Supported Platforms

	OpenROAD v1.0 will build on “bare metal”, CentOS 7 with required
packages installed as specified in the README.

	MacOS will also be supported.

	Users with access to Docker will also be able to build on any machine
using the included Dockerfile.

Design Partitioning and Logic Synthesis

	Logic Synthesis (Yosys) will accept only hierarchical RTL Verilog.

	SystemVerilog to Verilog conversion must be performed by the user
(e.g., using bsg sv2v or any tool of their choosing) before running
Yosys.

	Logic Synthesis is one of potentially multiple steps in OpenROAD that
may require a single merged LEF as of the v1.0 release. A utility
script to perform merging is
here [https://github.com/The-OpenROAD-Project/alpha-release/blob/master/flow/scripts/mergeLib.pl].

	To support convergence in the downstream place-CTS-route steps, it is
advisable to exclude cells that risk difficult pin access (e.g.,
sub-X1 sizes) and/or to invoke cell padding during placement. The
cell exclusion would be akin to a “dont_use” list, which is not
currently supported and must be manually implemented by editing the
library files.

STA

	Supports multi-corner analysis (e.g., setup and hold), but with limit
of one mode.

	SDC support up to latest public, open version (e.g., SDC 1.4).

	No SI analysis: any coupling caps can be multiplied by a “Miller
Coupling Factor” (MCF) and then treated as grounded.

	No CCS/ECSM (current-source model) support.

	No LVF support.

	No PBA analysis option.

	No instance IR drop (i.e., setting a rail voltage for given
instance).

	No reduction of non-tree wiring topologies. (Arnoldi reduction
provided along with O’Brien-Savarino, 2-pole, Elmore reduction and
delay calculation options.)

Floorplan

	Macro placement is limited to 100 RAMs/macros per P&R block.

	PDN configuration files must be provided by the user. These are
documented in the “pdngen” tool repo,
here [https://github.com/The-OpenROAD-Project/pdn].

Placement

	A P&R block is limited to one logic power domain and one I/O power
domain. Additional power domains must be handled manually (OpenROAD
Tcl scripting).

	Isolation cells, level converters and power management must be
manually inserted into the layout by the user (e.g., as
pre-placements).

	No support of UPF/CPF formats for power intent.

	Support of user guidance for logic clustering and placement will be
limited to “fence” and “pre-placement” guidance, with the caveat that
such guidance may degrade solution QOR in the OpenROAD flow.

Clock Tree Synthesis

	Support only positive edge-triggered FFs

	Hold buffering will be at post-CTS and not later in the flow

Routing

	The TritonRoute router will not understand LEF57, LEF58 constructs in
techlef: the workaround is OpenROAD Generic Node Enablement (see
“OpenROAD Requirements for Generic Node Enablement, at this
link [https://docs.google.com/document/d/1-KyRNu7qU_7oMYxXB5ToTkLv2C9AJbUAHJQr24rIU7U/edit?ts=5db1f0b2]).

	Users should be advised that TritonRoute does not handle coloring
explicitly; a color-correct-by-construction methodology (e.g., for Mx
layers in 14/12nm) is achieved via Generic Node Enablement.

	Antenna checking and fixing capability is committed for v1.0.

Layout Finishing and Final Verifications

	Parasitic extraction (SPEF from layout) is unlikely to comprehend
coupling.

	There is no “signoff-quality electrical/performance analysis”
counterpart to “PrimeTime-SI” (timing, signal integrity) or
“Voltus”/“RedHawk” (power integrity).

	A golden PV tool will be the evaluator for DRC.

	Generation of merged GDS currently requires a Magic 8.2 tech file.
Details are given
here [https://github.com/The-OpenROAD-Project-Attic/OpenROAD-Utilities/tree/master/def-to-gdsii].

	Export of merged GDS does not add text markings that may be expected
by commercial physical verification tools.

	For supported design tape-outs (particularly, at a commercial 14/12nm
node, up through July 2020), physical verification (DRC/LVS) is
expected to be performed by the design team using commercial tools.
(Everything up to routed DEF and merged GDS will be produced by
OpenROAD or other open-source tools.)

Developer Guide

Tool Philosophy

OpenROAD is a tool to build a chip from a synthesized netlist to a
physical design for manufacturing.

The unifying principle behind the design of OpenROAD is for all of the
tools to reside in one tool, with one process, and one database. All
tools in the flow should use Tcl commands exclusively to control them
instead of external “configuration files”. File based communication
between tools and forking processes is strongly discouraged. This
architecture streamlines the construction of a flexible tool flow and
minimizes the overhead of invoking each tool in the flow.

Tool File Organization

Every tool follows the following file structure, grouping sources, tests
and headers together.

src/CMakelists.txt - add_subdirectory's src/CMakelists.txt
src/tool/src/ - sources and private headers
src/tool/src/CMakelists.txt
src/tool/include/tool/ - exported headers
src/tool/test/
src/tool/test/regression

OpenROAD repository

CMakeLists.txt - top level cmake file
src/Main.cc
src/OpenROAD.cc - OpenROAD class functions
src/OpenROAD.i - top level swig, %includes tool swig files
src/OpenROAD.tcl - basic read/write lef/def/db commands
include/openroad/OpenRoad.hh - OpenROAD top level class, has instances of tools
include/openroad/Error.hh - Error reporting API

Some tools such as OpenDB are submodules, which are simply
subdirectories in /src that are pointers to the git submodule. They are
intentionally not segregated into a separate /module.

The use of submodules for new code integrated into OpenROAD is strongly
discouraged. Submodules make changes to the underlying infrastructure
(OpenDB, OpenSTA etc) difficult to propagate across the dependent
submodule repositories. Submodules: just say no.

Where external/third party code that a tool depends on should be placed
depends on the nature of the dependency.

	Libraries - code packaged as a linkable library. Examples are tcl,
boost, zlib, eigen, lemon, spdlog.

These should be installed in the build environment and linked by
OpenRoad. Document these dependencies in the top level README.md file.
The Dockerfile should be updated to illustrate where to find the library
and how to install it. Adding libraries to the build enviroment requires
coodination with the sys admins for the continuous integration hosts to
make sure the environments include the dependency. Advanced notification
should also be given to the development team so their private build
environments can be updated.

	

Each tool cmake file builds a library that is linked by the OpenROAD
application. The tools should not define a main() function. If the
tool is tcl only and has no c++ code it does not need to have a cmake
file. Tool cmake files should not include the following:

	cmake_minimum_required

	GCC_COVERAGE_COMPILE_FLAGS

	GCC_COVERAGE_LINK_FLAGS

	CMAKE_CXX_FLAGS

	CMAKE_EXE_LINKER_FLAGS

None of the tools have commands to read or write LEF, DEF, Verilog or
database files. These functions are all provided by the OpenROAD
framework for consistency.

Tools should package all state in a single class. An instance of each
tool class resides in the top level OpenROAD object. This allows
multiple tools to exist at the same time. If any tool keeps state in
global variables (even static) only one tool can exist at a time. Many
of the tools being integrated were not built with this goal in mind and
will only work on one design at a time. Eventually all of the tools
should be upgraded to remove this deficiency as they are re-written to
work in the OpenROAD framework.

Each tool should use a unique namespace for all of its code. The same
namespace should be used for Tcl functions, including those defined by a
swig interface file. Internal Tcl commands stay inside the namespace,
and user visible Tcl commands should be defined in the global namespace.
User commands should be simple Tcl commands such as ‘global_placement’
that do not create tool instances that must be based to the commands.
Defining Tcl commands for a tool class is fine for internals, but not
for user visible commands. Commands have an implicit argument of the
current OpenROAD class object. Functions to get individual tools from
the OpenROAD object can be defined.

Initialization (c++ tools only)

The OpenRoad class has pointers to each tools with functions to get each
tool. Each tool has (at a minimum) a function to make an instance of the
tool class, and an initialization function that is called after all of the
tools have been made, and a funtion to delete the tool. This small header
does not include the class definition for the tool so that the OpenRoad
framework does not have to know anything about the tool internals or include
a gigantic header file.

MakeTool.hh defines the following:

Tool *makeTool();
void initTool(OpenRoad *openroad);
void deleteTool(Tool *tool);

The OpenRoad::init() function calls all of the makeTool functions and
then all of the initTool() functions. The init functions are called from
the bottom of the tool dependences. Each init function grabs the state
it needs out of the OpenRoad instance.

Commands

Tools should provide Tcl commands to control them. Tcl object based tool
interfaces are not user friendly. Define Tcl procedures that take
keyword arguments that reference the OpenRoad object to get tool state.
OpenSTA has Tcl utilities to parse keyword arguements
(sta::parse_keyword_args). See OpenSTA/tcl/*.tcl for examples. Use swig
to define internal functions to C++ functionality.p

Tcl files can be included by encoding them in cmake into a string that
is evaluated at run time (See Resizer::init()).

Errors

Tools should report errors to the user using the ord::error function
defined in include/openroad/Error.hh. ord::error throws
ord::Exception. The variables ord::exit_on_error and
ord::file_continue_on_error control how the error is handled. If
ord::exit_on_error is true OpenROAD reports the error and exits.
If the error is encountered while reading a file with the source or
read_sdc commands and ord::file_continue_on_error is false
no other commands are read from the file. The default values of both
variables is false.

Test

Each “tool” has a /test directory containing a script nameed
“regression” to run “unit” tests. With no arguments it should run
default unit tests.

No database files should be in tests. Read LEF/DEF/Verilog to make a
database.

The regression script should not depend on the current working
directory. It should be able to be run from any directory. Use filenames
relative to the script name rather the the current working directory.

Regression scripts should print a consise summary of test failures. The
regression script should return an exit code of zero if there are no
errors and 1 if there are errors. The script should not print
thousands of lines of internal tool info.

Regression scripts should pass the -no_init option to openroad so
that a user’s init file is not sourced before the tests runs.

Regression scripts should add output files or directories to
.gitignore so that running does note leave the source repository
“dirty”.

The Nangate45 open source library data used by many tests is in
test/Nangate45. Use the following command to add a link in the tool
command

cd tool/test
ln -s ../../../test/Nangate45

After the link is installed, the test script can read the liberty file
with the command shown below.

read_liberty Nangate45/Nangate45_typ.lib

Builds

Checking out the OpenROAD repo with –recursive installs all of the
OpenRoad tools and their submodules.

git clone --recusive https://github.com/The-OpenROAD-Project/OpenROAD.git
cd OpenROAD
mkdir build
cd build
cmake ..
make

All tools build using cmake and must have a CMakeLists.txt file in their
tool directory.

This builds the openroad executable in /build.

Note that removing submodules from a repo when moving it into OpenROAD
is less than obvious. Here are the steps:

git submodule deinit <path_to_submodule>
git rm <path_to_submodule>
git commit-m "Removed submodule "
rm -rf .git/modules/<path_to_submodule>

Tools should compile with no compile warnings in gcc or clang with
-Wall.

Tool Work Flow

To work on one of the tools inside OpenROAD when it is a submodule
requires updating the OpenROAD repo to integrate your changes.
Submodules point to a specific version (hash) of the submodule repo and
do not automatically track changes to the submodule repo.

Work on OpenROAD should be done in the openroad branch. Stable
commits on the openroad branch are periodically pushed to the
master branch for public consumption.

To make changes to a submodule, first check out a branch of the
submodule (git clone –recursive does not check out a branch, just a
specific commit).

cd src/<tool>
git checkout <branch>

<branch> is the branch used for development of the tool when it is
inside OpenROAD. The convention is for to be named ‘openroad’.

After making changes inside the tool source tree, stage and commit them
to the tool repo and push them to the remote repo.

git add ...
git commit -m "massive improvement"
git push

If instead you have done development in a different branch or source
tree, merge those changes into the branch used for OpenROAD.

Once the changes are in the OpenROAD submodule source tree it will show
them as a diff in the hash for the directory.

cd openroad
git stage <tool_submodule_dir>
git commit -m "merge tool massive improvement"
git push

Example of Adding a Tool to OpenRoad

The patch file “add_tool.patch” illustrates how to add a tool to
OpenRoad. Use

patch -p < doc/add_tool.patch`
cd src/tool/test
ln -s ../../../test/regression.tcl regression.tcl

to add the sample tool. This adds a directory OpenRoad/src/tool that
illustrates a tool named “Tool” that uses the file structure described
and defines a command to run the tool with keyword and flag arguments as
illustrated below:

% toolize foo
Helping 23/6
Gotta pos_arg1 foo
Gotta param1 0.000000
Gotta flag1 false

% toolize -flag1 -key1 2.0 bar
Helping 23/6
Gotta pos_arg1 bar
Gotta param1 2.000000
Gotta flag1 true

% help toolize
toolize [-key1 key1] [-flag1] pos_arg1

Documentation

Tool commands should be documented in the top level OpenROAD README.md
file. Detailed documentation should be the tool/README.md file.

Tool Flow

	Verilog to DB (dbSTA)

	Init Floorplan (OpenROAD)

	I/O placement (ioPlacer)

	PDN generation (pdngen)

	Tapcell and Welltie insertion (tapcell)

	I/O placement (ioPlacer)

	Macro placement (TritonMacroPlace)

	Global placement (RePlAce)

	Gate Resizing and buffering (Resizer)

	Detailed placement (OpenDP)

	Clock Tree Synthesis (TritonCTS)

	Repair Hold Violations (Resizer)

	Global route (FastRoute)

	Detailed route (TritonRoute)

	Final timing/power report (OpenSTA)

Tool Checklist

Tools should make every attempt to minimize external dependencies.
Linking libraries other than those currently in use complicates the
builds and sacrifices the portability of OpenROAD. OpenROAD should be
portable to many different compiler/operating system versions and
dependencies make this vastly more complicated.

OpenROAD submodules reference tool openroad branch head. No git
develop, openroad_app, or openroad_build branches.

Submodules used by more than one tool belong in /src, not duplicated in
each tool repo.

CMakeLists.txt does not use add_compile_options include_directories
link_directories link_libraries Use target_ versions instead. See
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1

CMakeLists.txt does not use glob. Use explicit lists of source files and
headers instead.

CMakeLists.txt does not define CFLAGS CMAKE_CXX_FLAGS
CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE Let the top level and
defaults control these.

No main.cpp or main procedure.

No compiler warnings for gcc or clang with optimization enabled.

Does not call flute::readLUT (called once by OpenRoad).

Tcl command(s) documented in top level README.md in flow order.

Command line tool documentation in tool README.

Conforms to Tcl command naming standards (no camel case).

Does not read configuration files. Use command arguments or support
commands.

.clang-format at tool root directory to aid foreign programmers.

No jenkins/, Jenkinsfile, Dockerfile in tool directory.

regression script named “test/regression” with no arguments that runs
tests. Not tests/regression-tcl.sh, not test/run_tests.py etc.

regression script should run independent of current directory. For
example, ../test/regression should work.

regression should only print test results or summary, not belch 1000s of
lines of output.

Test scripts use OpenROAD tcl commands (not itcl, not internal
accessors).

regression script should only write files in a directory that is in the
tool’s .gitignore so the hierarchy does not have modified files in it as
a result or running the regressions.

Regressions report no memory errors with valgrind (stretch goal).

Regressions report no memory leaks with valgrind (difficult).

James Cherry, Dec 2019

Coding Practices

Note

This is a compilation of many idioms in openroad code that I consider
undesirable. Obviously other programmers have different opinions or
they would not be so pervasive. James Cherry 04/2020

C++

Practice #1

Don’t comment out code. Remove it. git provides a complete history of
the code if you want to look backwards. Huge chunks of commented out
code that are stunningly common in student code makes it nearly
impossible to read.

FlexTa.cpp has 220 lines of code and 600 lines of commented out code.

Practice #2

Don’t use prefixes on function names or variables. That’s what namespaces are for.

namespace fr {
 class frConstraint
 class frLef58CutClassConstraint
 class frShortConstraint
 class frNonSufficientMetalConstraint
 class frOffGridConstraint
 class frMinEnclosedAreaConstraint
 class frMinStepConstraint
 class frMinimumcutConstraint
 class frAreaConstraint
 class frMinWidthConstraint
 class frLef58SpacingEndOfLineWithinEndToEndConstraint
 class frLef58SpacingEndOfLineWithinParallelEdgeConstraint
 class frLef58SpacingEndOfLineWithinMaxMinLengthConstraint
 class frLef58SpacingEndOfLineWithinConstraint
 class frLef58SpacingEndOfLineConstraint
}

Practice #3

Namespaces should be all lower case and short. This is an example of a poor
choice: namespace TritonCTS

Practice #4

Don’t use extern on function definitions. It is pointless in a world
with prototypes.

namespace fr {
 extern frCoord getGCELLGRIDX();
 extern frCoord
 getGCELLGRIDY();
 extern frCoord getGCELLOFFSETX();
 extern frCoord
 getGCELLOFFSETY();
}

Practice #5

Don’t use prefixes on file names. That’s what directories are for.

frDRC.h frDRC_init.cpp frDRC_main.cpp frDRC_setup.cpp frDRC_util.cpp

Practice #6

Don’t name variables theThingy, curThingy or myThingy. It is just distracting
extraneous verbage. Just use thingy.

float currXSize;
float currYSize;
float currArea;
float currWS;
float currWL;
float currWLnoWts;

Practice #7

Do not use global varaibles. All state should be inside of classes.
Global variables make multi-threading next to impossible and preclude
having multiple copies of a tool running in the same process. The only
global variable in OpenRoad should be the singleton that tcl commands
reference.

extern std::string DEF_FILE;
extern std::string GUIDE_FILE;
extern std::string OUTGUIDE_FILE;
extern std::string LEF_FILE;
extern std::string OUTTA_FILE;
extern std::string OUT_FILE;
extern std::string DBPROCESSNODE;
extern std::string OUT_MAZE_FILE;
extern std::string DRC_RPT_FILE;
extern int MAX_THREADS ;
extern int VERBOSE ;
extern int BOTTOM_ROUTING_LAYER;
extern bool ALLOW_PIN_AS_FEEDTHROUGH;
extern bool USENONPREFTRACKS;
extern bool USEMINSPACING_OBS;
extern bool RESERVE_VIA_ACCESS;
extern bool ENABLE_BOUNDARY_MAR_FIX;

Practice #8

Do not use strings (names) to refer to database or sta objects except in
user interface code. DEF, SDC, and verilog all use different names for
netlist instances and nets so the names will not always match.

Practice #9

Do not use continue. Wrap the body in an if instead.

// instead of
for(dbInst* inst : block->getInsts()) {
 // Skip for standard cells
 if((int)inst->getBBox()->getDY() <= cellHeight) { continue; }
 // code
}
// use
for(dbInst* inst : block->getInsts()){
 // Skip for standard cells
 if((int)inst->getBBox()->getDY() > cellHeight) {
 // code
 }
}

Practice #10

Don’t put magic numbers in the code. Use a variable with a name that
captures the intent. Document the units if they exist.

examples of unnamed magic numbers:

Practice #11

Don’t copy code fragments. Write functions.

// 10x
int x_pos = (int)floor(theCell->x_coord / wsite + 0.5);
// 15x
int y_pos = (int)floor(y_coord / rowHeight + 0.5);

// This
nets[newnetID]->netIDorg = netID;
nets[newnetID]->numPins = numPins;
nets[newnetID]->deg = pinInd;
nets[newnetID]->pinX = (short *)malloc(pinInd* sizeof(short));
nets[newnetID]->pinY = (short *)malloc(pinInd* sizeof(short));
nets[newnetID]->pinL = (short *)malloc(pinInd* sizeof(short));
nets[newnetID]->alpha = alpha;

// Should factor out the array lookup.
Net *net = nets[newnetID];
net->netIDorg = netID;
net->numPins = numPins;
net->deg = pinInd;
net->pinX = (short*)malloc(pinInd* sizeof(short));
net->pinY = (short *)malloc(pinInd* sizeof(short));
net->pinL = (short *)malloc(pinInd* sizeof(short));
net->alpha = alpha;

// Same here:
if(grid[j][k].group != UINT_MAX) {
 if(grid[j][k].isValid == true) {
 if(groups[grid[j][k].group].name == theGroup->name)
 area += wsite * rowHeight;
 }
}

Practice #12

Don’t use logical operators to test for null pointers.

if (!net) {
 // code
}

// should be
if (net != nullptr) {
 // code
}

Practice #13

Don’t use malloc. Use new. We are writting C++, not C.

Practice #14

Don’t use C style arrays. There is no bounds checks for them so they
invite subtle memory errors to unwitting programmers that fail to use
valgrind. Use std::vector or std::array.

Practice #15

Break long functions into smaller ones, preferably that fit on one
screen.

	162 lines void DBWrapper::initNetlist()

	246 lines static vector<pair<Partition, Partition>> GetPart()

	263 lines void MacroCircuit::FillVertexEdge()

Practice #16

Don’t reinvent functions like round, floor, abs, min, max. Use the std
versions.

int size_x = (int)floor(theCell->width / wsite + 0.5);

Practice #17

Don’t use C stdlib.h abs, fabs or fabsf. They fail miserably if the
wrong arg type is passed to them. Use std::abs.

Practice #18

Fold code common to multiple loops into the same loop. Each of these
functions loops over every instance like this:

legal &= row_check(log);
legal &= site_check(log);
for(int i = 0; i < cells.size(); i++) {
 cell* theCell = &cells[i];
 legal &= power_line_check(log);
 legal &= edge_check(log);
 legal &= placed_check(log);
 legal &= overlap_check(log);
}
// with this loop
for(int i = 0; i < cells.size(); i++) {
 cell* theCell = &cells[i];
}

Instead make one pass over the instances doing each check.

Practice #19

Don’t use == true, or == false.
Boolean expressions have a value of true or false already.

if(found.first == true) {
 // code
}
// is simply
if(found.first) {
 // code
}
// and
if(found.first == false) {
 // code
}
// is simply
if(!found.first) {
 // code
}

Practice #20

Don’t nest if statements. Use && on the clauses instead.

if(grid[j][k].group != UINT_MAX)
 if(grid[j][k].isValid == true)
 if(groups[grid[j][k].group].name == theGroup->name)

is simply

if(grid[j][k].group != UINT_MAX
 && grid[j][k].isValid
 && groups[grid[j][k].group].name == theGroup->name)

Practice #21

Don’t call return at the end of a function that does not return a value.

Practice #22

Don’t use <>’s to include anything but system headers. Your project’s
headers should NEVER be in <>’s.
- https://gcc.gnu.org/onlinedocs/cpp/Include-Syntax.html
- https://stackoverflow.com/questions/21593/what-is-the-difference-between-include-filename-and-include-filename

These are all wrong:
.. code-block:: cpp

#include <opendb/db.h>
#include <ABKCommon/uofm_alloc.h>
#include <OpenSTA/liberty/Liberty.hh>
#include <opendb/db.h>
#include <opendb/dbTypes.h>
#include <opendb/defin.h>
#include <opendb/defout.h>
#include <opendb/lefin.h>

Practice #23

Don’t make “include the kitchen sink” headers and include them in every
source file. This is convenient (lazy) but slows the builds down for
everyone. Make each source file include just the headers it actually
needs.

// Types.hpp
#include <OpenSTA/liberty/Liberty.hh>
#include <opendb/db.h>
#include <opendb/dbTypes.h>
// It should be obvious that every source file is not reading def.
#include <opendb/defin.h>
// or writing it.
#include <opendb/defout.h>
#include <opendb/lefin.h>
#include "db_sta/dbNetwork.hh"
#include "db_sta/dbSta.hh"

Note this example also incorrectly uses <>’s around openroad headers.

Header files should only include files to support the header. Include
files necessary for code in the code file, not the header.

In the example below NONE of the system files listed are necessary for
the header file.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>

unsigned num_nets = 1000;
unsigned num_terminals = 64;
unsigned verbose = 0;
float alpha1 = 1;
float alpha2 = 0.45;
float alpha3 = 0;
float alpha4 = 0;
float margin = 1.1;
unsigned seed = 0;
unsigned root_idx = 0;
unsigned dist = 2;
float beta = 1.4;
bool runOneNet = false;
unsigned net_num = 0;

Practice #24

Use class declarations if you are only refering to object by pointer
instead of including their complete class definition. This can vastly
reduce the code the compiler has to process.

class Network;
// instead of
#include "Network.hh"

Practice #25

Use pragma once instead of #define to protect headers from being read
more than once. The #define symbol has to be unique, which is difficult
to guarantee.

// Instead of:
#ifndef __MACRO_PLACER_HASH_UTIL__
 #define __MACRO_PLACER_HASH_UTIL__
#endif
// use
#pragma once

Practice #26

Don’t put “using namespace” inside a function. It makes no sense what so
ever but I have seen some very confused programmers do this far too many
times.

Practice #27

Don’t nest namespaces. We don’t have enough code to justify that
complication.

Practice #28

Don’t use using namespace It is just asking for conflicts and doesn’t
explicity declare what in the namespace is being used. Use using
namespace::symbol; instead. And especially NEVER EVER EVER using namespace
std. It is HUGE.

The following is especially confused because it is trying to “use” the
symbols in code that is already in the MacroPlace namespace.

using namespace MacroPlace;

namespace MacroPlace { }

Practice #29

Use nullptr instead of NULL. This is the C++ approved version of the
ancient C #define.

Practice #30

Use range iteration. C++ iterators are ugly and verbose.

// Instead of
odb::dbSet::iterator nIter;
for (nIter = nets.begin(); nIter != nets.end(); ++nIter) {
 odb::dbNet* currNet = *nIter;
 // code
}
// use
for (odb::dbNet* currNet : nets) {
 // code
}

Practice #34

Don’t use end of line comments unless they are very short. Don’t
assume that the person reading your code has a 60” monitor.

for (int x = firstTile._x; x <= lastTile._x; x++) { // Setting capacities of edges completely inside the adjust region according the percentage of reduction
 // code
}

Practice #35

Don’t std::pow for powers of 2 or for decimal constants.

// This
double newCapPerSqr = (_options->getCapPerSqr() * std::pow(10.0, -12));
// Should be
double newCapPerSqr = _options->getCapPerSqr() * 1E-12;

// This
unsigned numberOfTopologies = std::pow(2, numberOfNodes);
// Should be
unsigned numberOfTopologies = 1 << numberOfNodes;

Git

Practice #31

Don’t put /’s in .gitignore directory names. test/

Practice #32

Don’t put file names in .gitignore ignored directories. test/results
test/results/diffs

Practice #33

Don’t list compile artifacts in .gitignore They all end up in the build
directory so each file type does not have to appear in .gitignore.

All of the following is nonsense that has propagated faster than covid
in student code:

Compiled Object files

*.slo *.lo *.o *.obj

Precompiled Headers

*.gch *.pch

Compiled Dynamic libraries

*.so *.dylib *.dll

Fortran module files

*.mod *.smod

Compiled Static libraries

*.lai *.la *.a *.lib

CMAKE

Practice #35

Don’t change compile flags in cmake files. These are set at the top
level and should not be overriden.

set(CMAKE_CXX_FLAGS "-O3")
set(CMAKE_CXX_FLAGS_DEBUG "-g -ggdb")
set(CMAKE_CXX_FLAGS_RELEASE "-O3")

Practice #36

Don’t put /’s in cmake directory names. Cmake knows they are
directories.

target_include_directories(ABKCommon PUBLIC ${ABKCOMMON_HOME} src/)

Practice #37

Don’t use glob. Explictly list the files in a group.

Instead of
file(GLOB_RECURSE SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/src/*.cpp)
should be
list(REMOVE_ITEM SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/src/Main.cpp)
list(REMOVE_ITEM SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/src/Parameters.h)
list(REMOVE_ITEM SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/src/Parameters.cpp)

Database Math 101

DEF defines the units it uses with the units command.

UNITS DISTANCE MICRONS 1000 ;

Typically the units are 1000 or 2000 database units (DBU) per micron.
DBUs are integers, so the distance resolution is typically 1/1000u or
1nm.

OpenDB uses an int to represent a DBU, which on most hardware is 4
bytes. This means a database coordinate can be +/-2147483647, which is
about 2 billion units, corresponding to 2 million microns or 2 meters.

Since chip coordinates cannot be negative, it would make sense to use an
unsigned int to represent a distance. This conveys the fact that it
can never be negative and doubles the maximum possible distance that can
be represented. The problem is doing subtraction with unsigned numbers
is dangerous because the differences can be negative. An unsigned
negative number looks like a very very big number. So this is a very bad
idea and leads to bugs.

Note that calculating an area with int values is problematic. An
int * int does not fit in an int. My suggestion is to use
int64_t in this situation. Although long “works”, it’s size is
implementation dependent.

Unfortunately I have seen multiple instances of programs using a
double for distance calculations. A double is 8 bytes, with 52 bits
used for the mantissa. So the largest possible integer value that can be
represented without loss is 5e+15, 12 bits less than using a
int64_t. Doing an area calculation on a large chip that is more than
sqrt(5e+15) = 7e+7 DBU will overflow the mantissa and truncate the
result.

Not only is a double less capable than an int64_t, using it the
tells any reader of the code that the value can be real number, such as
104.23. So it is extremely misleading.

Circling back to LEF, we see that unlike DEF the distances are real
numbers like 1.3 even though LEF also has a distance unit statement. I
suspect this is a historical artifact of a mistake made in the early
definition of the LEF file format. The reason it is a mistake is because
decimal fractions cannot be represented exactly in binary floating
point. For example, 1.1 = 1.00011001100110011…, a continued fracion.

OpenDB uses int to represent LEF distances, just like DEF. This
solves the problem by multiplying distances by a decimal constant
(distance units) to convert the distance to an integer. In the future I
would like to see OpenDB use a dbu typedef instead of int
everywhere.

Unfortunately, I see RePlAce, OpenDP, TritonMacroPlace and OpenNPDN all
using double or float to represent distances and converting back
and forth between DBUs and microns everywhere. This means they also need
to round or floor the results of every calculation because the
floating point representation of the LEF distances is a fraction that
cannot be exactly represented in binary. Even worse is the practice of
reinventing round in the following idiom.

(int) x_coord + 0.5

Even worse than using a double is using float because the
mantissa is only 23 bits, so the maximum exactly representable integer
is 8e+6. This makes it even less capable than an int.

When a value has to be snapped to a grid such as the pitch of a layer
the calculation can be done with a simple divide using ints, which
floors the result. For example, to snap a coordinate to the pitch
of a layer the following can be used.

int x, y;
inst->getOrigin(x, y);
int pitch = layer->getPitch();
int x_snap = (x / pitch) * pitch;

The use of rounding in existing code that uses floating point
representations is to compensate for the inability to represent floating
point fractions exactly. Results like 5.99999999992 need to be “fixed”.
This problem does not exist if fixed point arithmetic is used.

The only place that the database distance units should appear in any
program should be in the user interface, because humans like microns
more than DBUs. Internally code should use int for all database
units and int64_t for all area calculations.

James Cherry, 2019

Getting Involved

Thank you for taking the time to read this document and to contribute,
the OpenROAD project will not reach all of its objectives without help!

Possible ways to contribute

	Open Source PDK information

	Open Source Designs

	Useful scripts

	Tool improvements

	New tools

	Improving documentation including this document

	Star our project and repos so we can see the number of people
interested

Licensing Contributions

As much as possible, all contributions should be licensed using the BSD3
license. You can propose another license if you must but contributions
made with BSD3 fit in the spirit of OpenROAD’s permissively open source
philosophy. We do have exceptions in the project but over time we hope
that all contributions will be BSD3, or some other permissive license.

Contributing Open Source PDK information and Designs

If you have new design or PDK information to contribute, please add this to
the repo OpenROAD-flow-scripts [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/]. In the flow directory [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow] you will see a directory
for designs [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/designs] with Makefiles to run them, and one for PDK platforms [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms]
used by the designs. If you add a new PDK platform be sure to add at least
one design that uses it.

Contributing Scripts and Code

We follow the Google C++ style guide [https://google.github.io/styleguide/cppguide.html]. If you find code that is not
following this guide, within each file that you edit, follow the style in
that file. Please pay careful attention to the Tool Checklist for
all code. If you want to add or improve functionality in OpenROAD please
start with the top level app [https://github.com/The-OpenROAD-Project/OpenROAD/] repo. You can see in the src directory that
submodules exist pointing to tested versions of the other relevant repos
in the project. Please look at the tool workflow in the developer guide
document to work with the app and its submodule
repos in an efficient way.

Please pay attention to the test directory [https://github.com/The-OpenROAD-Project/OpenROAD/tree/master/test] and be sure to add tests
for any code changes that you make with open sourceable PDK and design
information. We provide the nandgate45 PDK in the OpenROAD-flow-scripts repo to
help with this. Pull requests with code changes are unlikely to be accepted
without accompanying test cases. There are many examples [https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/test/gcd_nangate45.tcl] tests. Each
repo has a test directory as well with tests you should run and add to if
you modify something in one of the submodules.

For changes that claim to improve QoR or PPA, please run many tests and
ensure that the improvement is not design specific. There are designs
in the OpenROAD-flow-scripts [https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/] repo which can be used unless the improvement is
technology specific.

Do not add runtime or build dependencies without serious thought. For a
project like OpenROAD with many application sub components, the software
architecture can quickly get out of control. Changes with lots of new
dependencies which are not necessary are less likely to be integrated.

If you want to add TCL code to define a new tool command look at pdngen
as an example of how to do so. Take a look at the cmake file [https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/src/CMakeLists.txt] which
automatically sources the tcl code and the tcl code [https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/src/pdngen/src/PdnGen.tcl] itself.

Questions

You can file git issues to ask questions, file issues or you can contact
us via email openroad at eng.ucsd.edu

Using the logging infrastructure

In order to ensure consistent messaging from the openroad application we
have adopted spdlog as our logging infrastructure. We have a thin
wrapper on top for extensibility. Whenever a message needs to be issued
you will use one of the logging functions in the ‘ord’ namespace.

All output from OpenROAD tools should be directed through the logging
API so that redirection, file logging and execution control flow is
handled consistently.

The logging infrastructure also supports generating a JSON [https://www.json.org] file containing design metrics (e.g. area,
slack). This output is directed to a user specified file. The openroad
application take a “-metrics ” command line argument to specify the file.

Message Types

Report

Reports are tool output in the form of a report to the user. Examples
are timing paths, or power analysis results. Tool reports that use
‘printf’ or c++ streams should use the report message API instead.

Debug

Debug messages are only of use to tool developers and not to end users.
These messages are not shown unless explicitly enabled.

Information

Information messages may be used for reporting metrics, quality of
results, or program status to the user. Any messages which indicate
runtime problems, such as potential faulty input or other internal
program issues, should be issued at a higher status level.

Example messages for this status level:

Number of input ports: 47
Running optimization iteration 2
Current cell site utilization: 57.1567%

Warning

Warnings should be used for indicating atypical runtime conditions that
may affect quality, but not correctness of the output. Any conditions
that affect correctness should be issued at a higher status level.

Example warning messages:

Core area utilization is greater than 90%. The generated cell placement may not be routable.
14 outputs are not constrained for max capacitance.
Pin ‘A[0]’ on instance ‘mem01’ does not contain antenna information and will not be checked for antenna violations.

Error

Error messages should be used for indicating correctness problems.
Problems with command arguments are a good example of errors. Errors
exit the current command by throw an error that can be caught in a Tcl
command script. Errors that occur while reading a command file stop
executing the script commands.

Example error messages:

Invalid selection: net ‘test0’ does not exist in the design.
Cell placement cannot be run before floorplanning.
Argument ‘max_routing_layer’ expects an integer value from 1 to 10.

Critical

Critical messages should be used for indicating correctness problems
that the program is not able to work around or ignore, and require
immediate exiting of the program (abort).

Example critical messages:

Database ‘chip’ has been corrupted and is not recoverable.
Unable to allocate heap memory for array ‘vertexIndices’. The required memory size may exceed host machine limits.
Assertion failed: ‘nodeVisited == false’ on line 122 of example.cpp. Please file a Github issue and attach a testcase.

Coding

Each status message requires: * The three letter tool ID * The message
ID * The message string * Optionally, additional arguments to fill in
placeholders in the message string

Reporting is simply printing and does not require a tool or message ID.
The tool ID comes from a fixed enumeration of all the tools in the
system. This enumeration is in Logger.h. New abbreviations should be
added after discussion with the system architects. The abbreviation
matches the c++ namespace for the tool.

Message IDs are integers. They are expected to be unique for each tool.
This has the benefit that a message can be mapped to the source code
unambiguously even if the text is not unique. Maintaining this invariant
is the tool owner’s responsibility. To ensure that the IDs are unique
each tool should maintain a file named ‘messages.txt’ in the top level
tool directory listing the message IDs along with the format string.
When code that uses a message ID is removed the ID should be retired by
removing it from ‘messages.txt’. See the tuility
etc/find_messages.py to scan a tool directory and write a
messages.txt file.

Spdlog comes with the fmt library which supports message formatting in a
python / c++20 like
style [https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification].

The message string should not include the tool ID or message ID which
will automatically be prepended. A trailing new line will automatically
be added so messages should not end with one. Messages should be written
as complete sentences and end in a period. Multi-line messages may
contain embedded new lines.

Some examples:

logger->report(“Path startpoint: {}”, startpoint);
logger->error(ODB, 25, “Unable to open LEF file {}.”, file_name);
logger->info(DRT, 42, “Routed {} nets in {:3.2f}s.”, net_count, elapsed_time);

Tcl functions for reporting messages are defined in the OpenRoad swig
file OpenRoad.i. The message is simply a Tcl string (no c++20
formatting). The logger for Tcl functions The above examples in Tcl are
shown below.

utl::report “Path startpoint: $startpoint”
utl::error ODB 25 “Unable to open LEF file $file_name.”
utl::info DRT 42 “Routed $net_count nets in [format %3.2f $elapsed_time].”

utl::report should be used instead of ‘puts’ so that all output is
logged.

Calls to the Tcl functions utl::warn and utl::error with a single
message argument report with tool ID “UKN” and message ID 0000.

Tools #include utl/Logger.h that defines the logger API. The
Logger instance is owned by the OpenRoad instance. Each tool should
retrieve the logger instance in the tool init function called after the
tool make function by the OpenRoad application.

Every tool swig file must include src/Exception.i so that errors thrown
by utl::error are caught at the Tcl command level. Use the following
swig command before %inline.

%include "../../Exception.i"

The logger functions are shown below.

Logger::report(const std::string& message,
 const Args&... args)
Logger::info(ToolId tool,
 int id,
 const std::string& message,
 const Args&... args)
Logger::warn(ToolId tool,
 int id,
 const std::string& message,
 const Args&... args)
Logger::error(ToolId tool,
 int id,
 const std::string& message,
 const Args&... args)
Logger::critical(ToolId tool,
 int id,
 const std::string& message,
 const Args&... args)

The corresponding Tcl functions are shown below.

utl::report message
utl::info tool id message
utl::warn tool id message
utl::error tool id message
utl::critical tool id message

Although there is a utl::critical function, it is really difficult to
imagine any circumstances that would justify aborting execution of the
application in a tcl function.

Debug Messages

The debug message have a different programming model. As they are most
often not issued the concern is to avoid slowing down normal
execution. For this reason such messages are issued by using the
debugPrint macro. This macro will avoid evaluating its arguments if they
are not going to be printed. The API is:

debugPrint(logger, tool, group, level, message, ...)

The debug() method of the Logger class should not be called directly. No
message id is used as these messages are not intended for end users. The
level is printed as the message id in the output.

The argument types are as for the info/warn/error/ciritical messages.
The one additional argument is group which is a const char*. Its
purposes is to allow the enabling of subsets of messages within one
tool.

Debug messages are enabled with the tcl command: set_debug_level <tool> <group> <level>

Metrics

The metrics logging uses a more restricted API since JSON only supports
specific types. There are a set of overloaded methods of the form:

metric(ToolId tool,
 const std::string_view metric,
 <type> value)

where <type> can be int, double, string, or bool. This will result in
the generated JSON:

"<tool>-<metric>" : value

String values will be enclosed in double-quotes automatically.

Converting to Logger

The error functions in include/openroad/Error.hh should no longer be
included or used. Use the corresponding logger functions.

All uses of the tcl functions ord::error and ord::warn should be updated
call the utl::error/warn with a Tool ID and message ID. For
compatibility these are defaulted to ‘UKN’ and ‘0000’ until they are
updated.

There is no reason to puts (ie, print) errors in regression tests
that are caught. The logger prints the error now.

Init floorplan, openroad/src, init floorplan, dbSta, resizer, and opendp
have been updated to use the Logger if you need examples of how to
initialize and use it.

Regression tests should not have any UKN-0000 messages in their ok
files. A simple grep should indicate that you still have pending calls
to pre-logger error/warn functions. `

The cmake file for the tool must also be updated to include spdlog in
the link libraries so it can find the header files if they are not in
the normal system directories. dfm is an example of this problem; it has
an ancient version of spdlog in ‘/usr/include/spdlog’. Use module to
install spdlog 1.8.1 on dfm and check your build there.

target_link_libraries(<library_target>
 PUBLIC
 utl
)

	Tool

	message/namespace

	antenna_checker

	ant

	dbSta

	sta

	FastRoute

	grt

	finale

	fin

	flute3

	stt

	gui

	gui

	ICeWall

	pad

	init_fp

	ifp

	ioPlacer

	ppl

	OpenDB

	odb

	opendp

	dpl

	OpenRCX

	rcx

	OpenROAD

	ord

	OpenSTA

	sta

	PartMgr

	par

	pdngen

	pdn

	PDNSim

	psm

	replace

	gpl

	resizer

	rsz

	tapcell

	tap

	TritonCTS

	cts

	TritonMacroPlace

	mpl

	TritonRoute

	drt

	utility

	utl

FAQs

Where can I download OpenROAD tools?

Currently, we don’t provide pre-built binaries for the tools. You need
to build the tools yourself on a supported platform. Please, refer to
the Getting Started section to build the tools.

How can I contribute?

Thank you for your willingness to contribute. Please, see the Getting
Involved guide.

Index

 January 2020 Tom Spyrou in consultation with James Cherry

In looking at the current LUT Characterization for CTS, there are about
4K lines in the look up table file. In the past it seems that generating
these took a long time which does not make sense. OpenSTA should be able
to run those 4K patterns in seconds.

We have been looking at extending the TCL API of OpenSTA to return
liberty table information. This heads down a slippery slope of
complexity since the tables are not regularly sized in all libraries. It
is also possible to load multiple liberty files in a single run which
are characterized differently. There may be cells from different vendors
used in a single design for example. Taken to its logical extreme the
CTS lookup tables could end up being a superset of Liberty and LEF.

Rather than making the look up table characterization more complex and
continuing to develop it in TCL, we should make it simpler, rely on the
sta and delay calculator C++ APIs more, and characterize the look up
tables needed for the dynamic programming on the fly at tool startup.

The current architecture is using 1980’s style software architecture
assumptions by not relying on the ability to call OpenSTA in an
integrated app during CTS but rather trying to pull out everything that
might ever be needed from OpenSTA up front. In OpenROAD this is not
necessary. The CTS application is nicely integrated into OpenROAD now.

In order to demonstrate how fast OpenSTA can run, we can make a
prototype in TCL that generates a netlist which contains all 4K patterns
in disconnected parallel pieces of logic. The instances can be named
such that each pattern can be found by looking for the correct instance
name or port names, subtract the arrival times between them, and storing
the delay information. If parasitics information is needed, all 4K
patterns can be put into one SPEF file. This container design will have
about 8K registers and some multiple of that number of buffers. OpenSTA
will run this design in seconds and only a single call to updateTiming
will be needed to get all of the arrival times up to date for all of the
patterns.

I think we should question the use of registers in the patterns and
instead of registers tie the buffer chain inputs to input ports and the
buffer chain outputs to output ports. This will make the netlist simpler
and avoid the transition setting on internal nodes issue we have seen in
the past. All inputs and outputs can be constrained with a simple SDC
which creates a virtual clock and sets all of the input arrival and
output required times to 0. The input transition can be set via the SDC
that creates the clock and arrival times. If it is necessary to sweep
input transition times, they can be reset and timing re-updated or exact
copies of the patterns can be made with different transition times set.

create_clock -period 10 -name virtual

set_input_delay -clock virtual 0 [all_inputs]

set_output_delay -clock virtual [all_outputs]

set_input_transition

on each input as needed, vary, rerun report_timing output load by
set_load

We can create a new tcl command in openroad.i to create a second opensta
instance, load it with the template netlist, run independent of opendb
and openroad, and save the LUT in a member variable of CTS.

 Philosophy :

As of 12/13/2019, besides Tapcell and Macroplace, we don’t need any
further integration into the top level app based on where we are today.
We have done enough to prove that we can do the rest far before July and
that we have a nicely architected app. We can use makefile targets and
db file handoffs cleanly for non integrated steps in the flow. We can
accept more integration changes but not by default. The integration
causes churn as we have seen. We have to focus on making what we have
work now. Once we have the 4 design columns green and openroad-flow set
up with CI then we can accept more integration work but not until then.
We need to converge the release.

Mechanics :

Starting tomorrow at 5pm Pacific Time on Friday 12/13

	For the submodules, the developers of each repo should make a branch
named “alpha2” and populate it from their openroad branch. The
openroad app will also create this branch. The “alpha2” branch should
not to be confused with alpha1 last July.

	Do not merge or push to the alpha2 branch without permission but keep
your active code in other branches.

	Permission to modify the alpha2 branches can be given by Cherry, Tom
or Austin with Tom or Cherry needed to approval the actual pull
request diffs.

	For continuing work not for alpha2, each repo internal to OpenROAD
should have a branch named “openroad” which the git submodules will
get their git hashes from. At the moment the branch naming for the
submodule repos is random. We need to unify this.

	For developers not working on January critical issues, they should
not slow down but rather continuing working in branches as usual
until we are ready for their changes.

	Documentation can be updated at any time, please update your README’s

	The OpenROAD-flow-scripts repo will be changing as we get more designs to
work. The scripts there will be have control added when get to the
demo freeze on 12/20. At that time we should also make an
alpha_release_2.0.0 branch there.

	Note : We will not support branches like alpha2 for the long term but
use them for their purpose, like the integration exercise, and then
move on as we did with alpha1 in July.

 Openroad project branching methodology post alpha2.1

Motivation :

Alpha2.1 has completed and we are back into a normal development cycle.
With the new openroad app, some of the procedures we had put in place
were poorly specified and a bit cumbersome. The goal of this document is
to specify clearly an efficient branching methodology for the top level
openroad app and also the submodules that it depends on. This
methodology is efficient for developers and still allows us to maintain
a stable externally facing branch.

Procedure :

The top level openroad app and all submodules which it depends on will
develop in a branch called “openroad”. All repo’s included in the
openroad app will use this branch name for consistency and so it’s easy
to know which branch to checkout when working. The openroad app will use
its git submodule commit to point to a stable commit of the submodules.
This setup replaces our previous procedure of developing in a branch
named “develop” and merging to master when stable. In many cases in the
past this procedure was shortcut with code being submitted to develop
and the submodule deriving its commit from a commit to develop. There is
no reason to have this two step process in the submodules when we now
have the top level app’s submodule commit. The submodule commit can
ensure that no bad code is seen by the top level app and that it remains
stable. The top level openroad app will also have a master branch which
is externally facing and which remains very stable. We will run some
combination of fast and slow regressions before merging to the top level
app’s master, whereas in normal development on the openroad branch we
will continue to commit and merge with fast regressions only.

Submodule’s master branch:

Submodule’s may use the master branch for repo specific externally
facing releases not tied to the top level openroad app. This would also
be a branch for any applications which are maintaining a standalone
application or servicing other non-openroad needs. It is recommended
that for code needed for papers that a branch is made for each paper so
that there is flexibility to change the master branch as needed.

External Modules: The “external” modules like magic, OpenSTA, eigen,
flute3 point to the master branch of those repo’s.

January 2020 Tom Spyrou

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to OpenROAD’s documentation!

 		
 Getting Started

 		
 Prerequisites

 		
 Get the tools

 		
 Option 1: build from sources using Docker

 		
 Option 2: Build from sources locally

 		
 Designs

 		
 Adding a New Design

 		
 Platforms

 		
 Adding a New Platform

 		
 Implement the Design

 		
 Miscellaneous

 		
 tiny-tests - easy to add, single concern, single Verilog file

 		
 nangate45 smoke-test harness for top level Verilog designs

 		
 User Guide

 		
 Code Organization

 		
 Setup

 		
 Using the flow

 		
 Logic Synthesis

 		
 Initialize Floorplan

 		
 Gate Resizer

 		
 Timing Analysis

 		
 MacroPlace

 		
 Tapcell

 		
 Global Placement

 		
 Detailed Placement

 		
 Clock Tree Synthesis

 		
 Global Routing

 		
 Detailed Routing

 		
 Capabilities/Limitations

 		
 Global Considerations

 		
 Supported Platforms

 		
 Design Partitioning and Logic Synthesis

 		
 STA

 		
 Floorplan

 		
 Placement

 		
 Clock Tree Synthesis

 		
 Routing

 		
 Layout Finishing and Final Verifications

 		
 Developer Guide

 		
 Tool Philosophy

 		
 Tool File Organization

 		
 Initialization (c++ tools only)

 		
 Commands

 		
 Errors

 		
 Test

 		
 Builds

 		
 Tool Work Flow

 		
 Example of Adding a Tool to OpenRoad

 		
 Documentation

 		
 Tool Flow

 		
 Tool Checklist

 		
 Coding Practices

 		
 C++

 		
 Practice #1

 		
 Practice #2

 		
 Practice #3

 		
 Practice #4

 		
 Practice #5

 		
 Practice #6

 		
 Practice #7

 		
 Practice #8

 		
 Practice #9

 		
 Practice #10

 		
 Practice #11

 		
 Practice #12

 		
 Practice #13

 		
 Practice #14

 		
 Practice #15

 		
 Practice #16

 		
 Practice #17

 		
 Practice #18

 		
 Practice #19

 		
 Practice #20

 		
 Practice #21

 		
 Practice #22

 		
 Practice #23

 		
 Practice #24

 		
 Practice #25

 		
 Practice #26

 		
 Practice #27

 		
 Practice #28

 		
 Practice #29

 		
 Practice #30

 		
 Practice #34

 		
 Practice #35

 		
 Git

 		
 Practice #31

 		
 Practice #32

 		
 Practice #33

 		
 CMAKE

 		
 Practice #35

 		
 Practice #36

 		
 Practice #37

 		
 Database Math 101

 		
 Getting Involved

 		
 Licensing Contributions

 		
 Contributing Open Source PDK information and Designs

 		
 Contributing Scripts and Code

 		
 Questions

 		
 Using the logging infrastructure

 		
 Message Types

 		
 Report

 		
 Debug

 		
 Information

 		
 Warning

 		
 Error

 		
 Critical

 		
 Coding

 		
 Debug Messages

 		
 Metrics

 		
 Converting to Logger

 		
 FAQs

 		
 Where can I download OpenROAD tools?

 		
 How can I contribute?

_static/comment-bright.png

_static/ajax-loader.gif

